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Abstract 
Turn-taking is a fundamental aspect of human communication 
and is the ability to organize turns, between the interlocutors, 
at appropriate locations throughout a conversation. In this 
work we investigate the influence of prosody on turn-taking us-
ing the recently proposed Voice Activity Projection model, 
which incrementally models the upcoming speech activity of 
the interlocutors in a self-supervised manner, without relying 
on explicit modelling of prosodic features, or specific annota-
tions of turn-taking events. Inspired by psycholinguistic exper-
iments we focus our analysis on single utterances containing 
syntactically ambiguous places, specifically designed to de-
pend on prosody. We further investigate the implicit influence 
of prosody on the turn-taking model through prosodic manipu-
lation of the speech signal. 
 

Introduction 
Turn-taking is the fundamental ability of humans to or-
ganize spoken interaction, i.e., to coordinate who the cur-
rent speaker is, in order to avoid the need for interlocu-
tors to listen and speak at the same time (Sacks, 
Schegloff, & Jefferson, 1974). A dialog can be viewed 
as a sequence of turns, constructed through the joint ac-
tivity of turn-taking between the two speakers. A turn re-
fers to segments of activity where a single speaker con-
trols the direction of the dialog. 

A common research question in phonetics, psycho-
linguistics and conversational analysis concerns the var-
ious cues (including speech, gaze and gestures) that hu-
mans use to detect or project turn-shifts (Duncan, 1972). 
When it comes to speech, a common distinction is made 
between the prosodic (non-lexical) and lexical (textual, 
syntactic, semantic) components of the speech signal. 
For example, (De Ruiter et al., 2006) argued, based on 
listening experiments, for the importance of syntactic in-
formation over intonation (pitch), while Bögels & Tor-
reira (2015) showed that intonation is important when 
syntactic completion is ambiguous.  However, such stud-
ies often require human listening experiments which are 
costly, anecdotal and constrained in time resolution and 
are therefore limited to small amounts of conversational 
contexts. An alternative approach is to use computational 
(Laskowski, Wlodarczak, & Heldner, 2019) to investi-
gate what type of information they are sensitive to. 

In conversational systems, turn-taking has tradition-
ally been modeled using threshold policies which recog-
nize silences longer than a chosen duration as transition-
relevant places. Although these types of models are com-
monly used, it is well known that they are insufficient for 
modeling human-like turn-taking (Skantze, 2021). Stud-
ies of human-human conversation have shown that turns 
are frequently shifted with a gap of just 200ms (Levinson 
& Torreira, 2015), or even with a slight overlap. Thus, 
given that humans also need some time to prepare a re-
sponse, it would be infeasible for humans to just use si-
lence as a cue to turn-taking. Instead, it has been 

suggested that they are able to project turn completions 
already while the other person is speaking (Sacks et all., 
1974; Garrod & Pickering, 2015; Levinson & Torreira, 
2015). In addition, humans produce so-called backchan-
nels (short feedback tokens such as "mhm") in a timely 
manner, often in overlap with the other speaker (Yngve, 
1970). 

Ekstedt & Skantze (2022) recently proposed Voice 
Activity Projection, VAP, which is a general, self-super-
vised turn-taking model. The model incrementally pro-
jects the future speech activity of the two speakers di-
rectly from raw audio waveforms. The model can be 
trained on lots of data, without human annotations, and 
is agnostic with respect to different types of speech in-
formation, as it does not depend on explicitly extracted 
features. This makes the VAP-model potentially suitable 
as a data-driven approach for investigating the role of 
prosody in turn-taking. 

In this work, we train a VAP-model on a large da-
taset (Cieri, Christopher et al., 2004; Godfrey et al., 
1992) of dyadic spoken interactions and evaluate it on 
specific turn-taking metrics, while augmenting the input 
audio to omit certain sources of prosodic information.  

Background 
Prosody refers to the non-verbal aspects of speech, in-
cluding intonation (F0/pitch contour), intensity (energy), 
and duration (of phones and silences). It has been found 
to serve many important functions in conversation, in-
cluding prominence, syntactic disambiguation, attitudi-
nal reactions, uncertainty, topic shifts, and turn-taking 
(Ward, 2019). Studies on both English and Japanese 
have found that level intonation (in the middle of the 
speaker's fundamental frequency range) tend to serve as 
a turn-holding cue, whereas either rising or falling pitch 
can be found in turn-yielding contexts (Gravano & 
Hirschberg, 2011; Local et al., 1986; Koiso et al., 1998). 
When it comes to intensity, studies have found that 
speakers tend to lower their voices when approaching 
potential turn boundaries, whereas turn-internal pauses 
have a higher intensity (Gravano & Hirschberg, 2011; 
Koiso et al., 1998). Regarding duration and speaking 
rate, Duncan (1972) found a “drawl on the final syllable 
or on the stressed syllable of a terminal clause” to be a 
turn-yielding cue (in English). This is also in line with 
the findings of Local et al (1986). 

When it comes to lexical information, a very strong 
cue to turn-taking is of course whether the utterance is 
syntactically or pragmatically complete (Ford & 
Thompson, 1996). Thus, even if prosodic cues can be 
found near the end of a turn-shift, it is not clear to what 
extent such cues provide additional information com-
pared to lexical cues, or if they are redundant. In an ex-
periment by De Ruiter et al (2006), subjects were asked 
to listen to a conversation and press a button when they 



anticipated a turn ending. The speech signal was manip-
ulated to either flatten the intonational contour, or to re-
move lexical information by low-pass filtering. The re-
sults showed that the absence of intonational information 
did not reduce the subjects' prediction performance sig-
nificantly, but that their performance deteriorated signif-
icantly in the absence of lexical information. From this, 
they concluded that lexical information is crucial for 
end-of-turn prediction, but that intonational information 
is neither necessary nor sufficient. Ekstedt and Skantze 
(2020) also found that it is possible to build fairly reliable 
turn-taking models using only lexical information. 

However, it has also been argued that while lexical 
information is important for turn-taking, there are many 
cases where a phrase may be syntactically complete, but 
it is unclear whether the turn is in fact yielded or not 
(Ford & Thompson, 1996). To investigate this, Bögels 
and Torreira (2015) performed a similar experiment as 
De Ruiter et al (2006) but selected the stimuli so that they 
contained several syntactic completion points (e.g., “Are 
you a student / at this university?”), and where the into-
nation phrase boundary provided additional cues to 
whether the turn was yielded or not. They found that sub-
jects indeed made better predictions with the help of in-
tonation and duration. 

Most previous attempts at modelling prosody in 
turn-taking have been limited in that they (I) only use in-
stances of mutual silence for predicting turn shifts (and 
therefore do not model projection of turn completion), 
and (II) only use fairly superficial, hand-crafted features, 
such as the extracted pitch slope or pitch level right be-
fore the pause (Gravano & Hirschberg, 2011; Meena et 
al., 2014). Apart from the problem that such features 
might be too simplistic, they also typically require 
speaker normalization of pitch (Zhang, 2018).   

In this work, we investigate various forms of turn-
taking events (including projection of both turn shifts 
and backchannels). We also use a more agnostic model-
ling approach, using latent speech representations that 
are learned in a self-supervised manner and extracted 
from the raw waveform (Oord et al., 2018). If our model 
is indeed able to pick up relevant prosodic information 
from these representations, it means that we do not have 
to do any special prosodic feature engineering or speaker 
normalization. 

Voice Activity Projection Model 
Ekstedt and Skantze (2022) proposed a generic turn-tak-
ing model that does not predict specific turn-taking 
events at specific moments in time. Instead, the model is 
given the task of Voice Activity Projection (VAP), 
which means that it must incrementally predict the future 
voice-activity (VA) of each interlocutor in a dialog. The 
prediction target at each incremental step is defined by a 
window of 2 seconds containing the future VA for both 
speakers. The window is discretized into 8 separate bins 
(4 for each speaker) where each bin is assigned a value 
of one if more than half of its frames are active, to pro-
duce an 8-bit binary digit, corresponding to 256 unique 
classes. 

The VAP model consists of an encoder which pro-
cesses raw audio waveforms, along with the current VA-
frame, VAf, and a concise representation over its history, 
VAh, to produce latent representations of a defined frame 

frequency, then fed into the predictor network. The pre-
dictor is a causal transformer (Vaswani et al., 2017) 
which processes the context available up until the current 
frame and outputs a probability distribution over the 256 
VAP classes, see Figure 1. For further details we refer 
the reader to (Ekstedt and Skantze, 2022). 

However, the model output can be difficult to utilize 
or interpret directly but Ekstedt and Skantze (2022) 
showed how it can be used to predict various turn-taking 
events as zero-shot classification tasks. The idea is to de-
fine subsets of classes that correspond to relevant transi-
tion states in the VA space then compare the probability 
mass over the given subset with another. The other sub-
set can be the compliment (all other states), their oppo-
site (the equivalent subset but from the other speaker’s 
point of view) or any other subset. Inspired by Heldner 
& Edlund (2010) we select subsets over the distribution 
which corresponds to “clear” gaps, pauses and overlaps-
between, which corresponds to VA transitions where the 
turn changes speaker.  

 

Figure 2. Template for the subset that encodes A (blue) being 
the next speaker at mutual silences. The red line indicates the 
current frame. Speaker B’s bins must be inactive (white). 
Speaker A’s last two bins must be active (dotted blue) and the 
first two are optionally active (light blue). 

Figure 1. The VAP-model consists of an encoder and a predic-
tor. The encoder processes raw waveforms and voice activity 
information to a latent representation used as input to the pre-
dictor. The predictor then outputs a probability distribution 
over all states defining the upcoming window of activity. 

 



To determine the next speaker during segments of 
mutual silence we compare the subset corresponding to 
A as the only next active speaker, shown in Figure 2, 
with its opposite (i.e., only B is active). We constrain the 
subset by forcing the last bins to be active while the most 
immediate bins are optionally active. The subset changes 
slightly during segments of active speech where we al-
low the most immediate frames of the active speaker to 
optionally be active, shown in Figure 3. Here the proba-
bility mass is compared with the subset where only the 
current speaker is active, as described for mutual si-
lences.  

In other words, we force the model to choose one of 
the two speakers by comparing simplified subsets which 
clearly defines two possible outcomes. This enables the 
interpretation of the model output as probabilities asso-
ciated with Shifts and Holds given knowledge about the 
last active speaker. 

Training and Data 
We train a VAP-model with a frame-level frequency of 
50Hz (20ms frame size). We use a pretrained CPC-
encoder (Rivière et al., 2020), kept frozen during train-
ing, to extract features from the combined, mono-chan-
nel, waveform of the two speakers. We use the combina-
tion of two dyadic conversational datasets, Switchboard 
(Godfrey et al., 1992) and Fisher-part-1 (Cieri et al., 
2004), resulting in 8288 unique dialogs. We set aside a 
test set of 5% (of each dataset) and split the remaining 
dialogs into a 90/10 train/validation split used for train-
ing. We use the AdamW (Kingma & Ba, 2015; Ilya & 
Hutter, 2019) optimizer and an early stopping criterion 
on the validation loss with a patience of 10 epochs. 

In order to investigate the role of prosody in the 
model's turn-taking predictions, we augment the input 
audio waveform of the test data in five ways to omit parts 
of the signal encoding for various prosodic features: 

Low pass: the signal is low pass filtered by down-
/up-sampling of the waveform like Weston et al. (2021). 
This effectively removes all high frequency phonetic in-
formation, while only the F0 and intensity contours are 
relatively intact. We use a cut-off frequency of 400Hz 
across all samples. 

F0 flat: the intonation contour is flattened to the av-
erage F0 of each speaker and segment. 

Intensity flat: The intensity contour is flattened to 
the average value of each speaker over all speech frames 
(as determined by the VA-features). We note that this 
augmentation is difficult to perform without including 
acoustic artifacts despite having access to speech bound-
aries given by the VA-features. Breaths become very 
loud and the gain inside smaller segments of silence is 
prominent. 

Duration average: Each phone in a segment is 
scaled to the average duration, of that specific phone, 
across the dataset. 

F0 shift: The intonation contour is shifted by 90% 
of the original value for each speaker over each active 
speech segment. This should (in theory) not affect the 
turn-taking predictions. However, we include this aug-
mentation to verify that the augmentations themselves 
does not have a too strong effect (e.g., through artifacts). 

All code is implemented in Python using the 
PyTorch (Paszke, et al., 2019), PyTorch-Lightning 
(Falcon, 2020) and Wandb (Biewald, 2020) libraries for 
machine learning and Praat (Yannick, Thompson, & De 
Boer, 2018; Boersma & Weenink, n.d.) for augmenta-
tions. 

Aggregate Turn-shift Evaluation 
We evaluate the model on the test-set given to the turn-
shift interpretations described above. The evaluation 
events are the same as described in Ekstedt and Skantze 
(2022), namely Hold/Shift and Pred-Shift, which auto-
matically extracts frames of turn-shifts at mutual silences 
and during active speech. We evaluate on the original au-
dio as well as augmented versions with the exception for 
Duration average, given that we do not have access to 
phone aligned annotations of the datasets. The aggregate 
performance is visualized in Figure 4.  

 

Figure 4. Aggregate results over the dialog test-set using the 
original and augmented waveforms. Left: Hold vs Shift at mu-
tual silences. Right: Shift prediction at ongoing speech. Note 
the difference in scale of the y-axis. 

 
We note that the Shift/Hold metric is highly imbalanced, 
containing a substantially larger number of holds, indi-
cated by the high (.77) majority class baseline. The Shift-
prediction metric is balanced by design, resulting in a 
lower baseline value (.33). The least intrusive augmenta-
tion is, as expected, the F0 shift transformation. How-
ever, the artifacts introduced still seem to have some ef-
fect on the models. The Low pass augmentation have the 
most significant impact on performance for over both 
tasks. This augmentation basically omits all information 
other than the F0 and intensity contours and indicates 
that the model do rely on more complex cues to predict 
the next speaker. The second most impactful augmenta-
tion is Intensity flat, which indicates, in accordance with 

 

Figure 3. Template for the subset that encodes A (blue) being 
the next speaker during ongoing activity from speaker B (yel-
low). The subset is the same as in Figure. 2 with the addition 
that the most immediate bins from speaker B may also be ac-
tive (light yellow). The red line indicates the current frame. 



the turn-taking literature in general, that shifts are pre-
ceded by changes (arguably drops) in the intensity con-
tour of the current speaker. We note that it seems slightly 
more important for the pred-shift task. Interestingly, F0 
flat had the least negative effect, which is surprising, 
given that pitch seems to be the most frequently used 
prosodic cue in computational turn-taking models. 

Utterance-level Analysis 
While the analysis above gives an overall metric on how 
important prosody is, it has been hypothesized that pros-
ody is especially important when the semantic/pragmatic 
completion is ambiguous, as discussed in Background. 
To focus their analysis on such situations, Bögels and 
Torreira (2015) constructed question templates where a 
short and a long version, sharing initial lexical infor-
mation, were recorded through scripted interviews (in 
Dutch). As an example, a short/long question pair "did 
you drive here?'' and "did you drive here this morning?'' 
contain the same initial words up to a common comple-
tion point (after the word "here''), which we will refer to 
as the short completion point, SCP. Note that for the lis-
tener (or the model) to predict a turn-shift towards the 
end of the short utterance, but not at the corresponding 
place in the long utterance, it must rely on prosody. 
Through listening experiments, where the participants 
are asked to press a button when they expect a turn shift, 
Bögels and Torreira (2015) found that the reaction time 
was indeed much faster after the short version, than after 
a long version cut after the SCP. 

For our experiments, we created a similar set of 9 
long/short utterance pairs in English using the Google 
TTS service and produced 10 versions of each long/short 
pair using 5 male and 5 female voices. The phrases are 
listed in Table 1. An example of such a pair, along with 
the model’s Shift-prediction, is visualized in Figure 5. As 
can be seen in the figure, the model correctly assigns a 
high probability to Hold until towards the end of each 
utterance, where it changes to Shift. This clearly illus-
trates the model's ability to project turn shifts before the 
utterance is complete, and before the large rise in final 
pitch has happened. In addition, we see how the model 
makes a clear distinction between the two utterances at 
the short completion point (SCP), where it predicts a 

Hold for the longer variant. This illustrates that the 
model is indeed sensitive to prosody, as that is the only 
information that is different up until that point. 

Since we rely on artificially generated utterance 
pairs, we are uncertain to what extent they reflect similar 
prosodic patterns as those generated by humans. There-
fore, we perform a similar analysis of the phrases as 
Bögels and Torreira (2015), by measuring the duration 
and maximum F0 frequency over the last syllable of the 
short completion point. In their analysis, they showed 
that longer duration and a higher rise in F0 are associated 
with the end of a turn, separating the measures at the SCP 
of the short phrase from the long. We obtain similar dis-
tributions from four out of the nine phrases but note that 
the remaining ones are not as easily separable, showing 
more uniform distributions over the duration dimension, 
as shown in Figure 6. However, from listening to the 
phrases, we still consider all recordings natural enough 
to be included in our analysis. 

We compare the performance of the VAP model on 
the short and long versions of each phrase to investigate 
whether it can recognize the prosodic differences and 
correctly predict the short completion point as either a 
Hold (long phrase) or a Shift (short phrase). In addition 
to the original recordings, we include evaluations of the 

 

Figure 5. A short/long phrase pair. The plots show the wave-
forms, mel-spectrograms, F0 contours and the model assigned 
Shift/Hold comparison, for the short and long version respec-
tively. The blue color in the bottom plots indicate a probability 
over 50%. The SCP is shown as a red dashed line for the long 
utterance. The red lines show the end time of the last word in 
each utterance.  

Table 1. The 9 phrases used in the utterance level analysis. 

Short Long 
Are you a student … here at this university 
Do you study psychol-
ogy 

… here at this university 

Are you a first year stu-
dent 

… here at this university 

So do you play basket-
ball 

… on Thursdays 

Have you participated in 
any experiments before 

… here at this university 

Do you live by yourself … or with someone else 
So you work on the side … in a supermarket in 

addition to your studies 
Did you come here by 
bike 

… this morning 

Did you drive here … this morning 
 



performance on the augmented versions to investigate 
whether any specific augmentation changes the predic-
tions of the model more than the other. The model output 
for the long version of the phrase “Are you a student here 
at this university?”, given various augmentations, is vis-
ualized in Figure 7-8. 

 

Figure 7. Original waveform of the long phrase “are 
you a student here at this university?”.  

Inspection of the original performance in Figure 7 indi-
cates that the model is sensitive to prosodic information 
and assigns a higher Hold probability at the SCP located 
on the word "student''. However, for the F0 flat augmen-
tation, in Figure 8a, we note that the model flips and as-
signs a higher Shift-probability at the SCP, which indi-
cate that if the dynamics of the F0 contour is omitted, the 
model cannot recognize that the speaker will continue to 
speak. Interestingly, the Intensity flat augmentation also 
effects the output of the model, but after the SCP, shown 
in Figure 8b. Here, the model does have access to the F0 
contour and correctly assigns a larger Hold-probability 
at the SCP, but then changes prediction to indicate that a 
Shift is probable following the word "here''. As a final 
note, the Low pass augmentation, which filters out all 
phonetic information while keeping both the intensity 
and F0 contour, does produce predictions close to that of 
the original audio, while being slightly less certain of a 
Shift after the entire utterance is completed, as seen in 
Figure 8c. The average duration augmentation, in Figure 
8d, seems to have a minute effect on this phrase where 

Figure 6. Duration and maximum relative F0 over the last syl-
lable at the “short completion point” for (L)ong and (S)hort ver-
sions of the synthesized voices. The x- and y-axis correspond 
to mean-shifted duration and relative F0 peak. 

 

(a) Flat F0. The hold probability flips to Shift, SCP 

 

(b) Flat intensity. 

 

(c) Low pass. 

 

(d) Average duration. 

Figure 8. Augmented versions of the long phrase “are 
you a student here at this university?”. 

 



the only qualitative difference from the original occurs 
after the SCP at the word “here”. The slightly longer 
phones do trigger a short Shift segment hinting towards 
a model sensibility for a “drawl” which is an elongation 
of phones at the end of turns.  

To get an aggregate evaluation of the model across 
all phrases, we define three regions in each utterance, up 
until the SCP point (for both long and short phrases), 
namely hold, predictive and reactive, and measure the 
average Shift probability predicted by the model in those 
regions. The hold region covers the beginning of the ut-
terance until the predictive region starts 200ms before 
the SCP. The predictive region continues until the very 
last frame, referred to as the reactive region, of the SCP 
where the entire word has been spoken. The model 
should produce a low shift probability on the hold region 
on both the long and short versions of the phrase. Over 
the short phrase the shift probability should increase 
across the predictive and reactive regions indicating that 
the model correctly predicts the SCP as the end of the 
utterance. However, the opposite is true over the long 
versions where the model should predict a hold. The ag-
gregate model performance over all phrases is visualized 
in Figure 9.  

 

Figure 9. Shift probabilities over the three regions on the short 
completion point over all phrases. 

The left part of Figure 9 displays the average Shift prob-
abilities for the points on the SCP for the short phrases 
(Short@SCP) which preferably should start low and rise 
consistently. The right part of the figure shows the cor-
responding performance but on the long phrases 
(Long@SCP) and should be consistently low, indicating 
that the speaker will continue their turn. Looking at the 
non-augmented signal (Original), and comparing the left 
and right figures, we see that the model is indeed sensi-
tive to prosody, confirming the anecdotal observation 
from Figure 5. The Low pass augmentation clearly hin-
ders the model from predicting a Shift, indicating that 
pitch and intensity in themselves are not enough. Among 
the other augmentations, F0 flat seems to have the largest 
negative effect, which confirms that intonation is im-
portant for disambiguating turn completion when lexical 
information is not enough. Duration seems to be less im-
portant, which aligns with the observation in Figure 6. 

Conclusion and Discussion 
In this work we train a general computational model of 
turn-taking, provide analytical methods suitable for eval-
uating their performance on turn-shift classification, and 
investigate how they utilize prosodic information of the 
speech signal. We investigate the model’s reliance on 

prosody by extending psycholinguistic experiments de-
signed to measure the effect of prosody for turn-taking 
in human subjects.  

We apply specific prosodic augmentations to the in-
put signal and show a deterioration of performance over 
two forms of turn-shift tasks, namely predictions at on-
going speech and during mutual silences. The perfor-
mance on the dataset of human-human dyadic conversa-
tion is less effected by prosodic manipulation than the 
specifically designed phrases. We note that omitting 
phonetic information, through the Low pass augmenta-
tion of the signal, has the largest impact on both the ag-
gregate- and utterance-level evaluation. This is not sur-
prising given that it is the most intrusive transformation 
of the signal but does indicate that VAP models do use 
phonetic information to model future activity. However, 
it is interesting that on the aggregate-level analysis a flat-
tening of the F0 contour does not seem to drastically ef-
fect performance, instead intensity seem to play a more 
important role.  

Even more convincing are perhaps the specific com-
parisons of the model’s ability to predict Shift vs Hold at 
syntactic completion points, where the lexical infor-
mation is identical. This task requires access to the pro-
sodic dynamics of the signal and should be impossible to 
distinguish based on lexical information alone. It is in-
teresting to note that on the syntactically ambiguous 
completion points F0 seem to play a more important role 
than that of intensity, showing the opposite effect of the 
aggregate-level analysis. 

Overall, we show that all models are most sensitive 
to the low-pass augmentations, indicating that phonetic 
information is important for turn-taking in general. We 
note that intensity is at least as important as pitch when 
applied to actual human long-form conversations, but 
that pitch plays a more important role for the disambigu-
ation at syntactically equivalent completion points. Inter-
estingly, we note that the importance of duration plays a 
less important role, indicating that the F0-contour is the 
most reliable cue in the presence of lexical ambiguity. 

We define an automatic evaluation task using TTS 
generated utterances, inspired by a psycholinguistic ex-
periment designed for humans, which enables the possi-
bility to perform coherent evaluation over large amount 
of data not reliant on expensive human evaluations. This 
form of evaluation of computational models could aid in 
understanding, interpreting and design of deep-learning 
models while at the same time serve to increase cooper-
ation between deep-learning researchers and the linguis-
tic, psycholinguistic and conversational analysis com-
munities. 
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